5,091 research outputs found

    The determinants of successful partnering: a transaction cost perspective

    Get PDF
    Support is emerging for the assertion that partnering can have a significant beneficial influence on project relationships and project outcomes. However, not all of the evidence bears this out: there are some examples of less-than-successful experiments with partnering approaches. Questions quite naturally arise as to whether any particular elements or aspects of partnering have differed in some of the documented examples, thus giving rise to their relative success or failure. In order to answer such questions there is a need for a theoretical framework against which to analyse the relative performance of partnering projects. In this paper, the authors propose an approach based upon aspects of Transaction Cost Economics (TCE) theory. It is argued that two main factors, contractual incompletedness and opportunism, are fundamental in determining whether project relationships are adversarial or not. The validity of the approach is examined by applying it retrospectively to a strategic partnering agreement involving more than 80 individual building projects. This agreement had been the subject of a four-year study and had been found to produce benefits in a number of areas, not least in the avoidance of conflict and disputes. After analysis, evidence for the reduction of contractual incompletedness was mixed, however the opportunistic inclinations of the participants (specifically, the contractors) were effectively attenuated by a clearly observable combination of factors, which included preselection criteria, and the use of appropriate management and commercial frameworks in which to operate. The case study suggests a prima facie validity to the analytical approach that was adopted, which merits further testing: the next stages being to develop and refine the framework, and to carry out comparative multi-case research on a number of different partnering projects

    The suitability of biodegradable poly(dl-lactide-co-glycolide)75:25 microspheres for the sustained release of antibiotics

    Get PDF
    Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation

    “Refactoring” Refactoring

    Get PDF
    Code refactoring’s primary impetus is to control technical debt, a metaphor for the cost in software development due to the extraneous human effort needed to resolve confusing, obfuscatory, or hastily-crafted program code. While these issues are often described as causing “bad smells,” not all bad smells emanate from the code itself. Some (often the most pungent and costly) originate in the formation, or expressions, of the antecedent intensions the software proposes to satisfy. Paying down such technical debt requires more than grammatical manipulations of the code. Rather, refactoring in this case must attend to a more inclusive perspective; particularly how stakeholders perceive the artifact; and their conception of quality – their appreciative system. First, this paper explores refactoring as an evolutionary design activity. Second, we generalize, or “refactor,” the concept of code refactoring, beyond changes to code structure, to improving design quality by incorporating the stakeholders’ experience of the artifact as it relates to their intensions. Third, we integrate this refactored refactoring as the organizing principle of design as a reflective practice. The objective is to improve the clarity, understandability, maintainability, and extensibility manifest in the stakeholder intensions, in the artifact, and in their interrelationship

    The Empire Strikes Back: The end of Agile as we know it?

    Get PDF
    Agile methods have co-evolved with the onset of rapid change in software and systems development and the methodologies and process models designed to guide them. Conceived from the lessons of practice, Agile methods brought a balanced perspective between the intentions of the stakeholder, the management function, and developers. As an evolutionary progression, trends towards rapid continuous delivery have witnessed the advent of DevOps where advances in tooling, technologies, and the environment of both development and consumption exert a new dynamic into the Agile oeuvre. We investigate the progression from Agile to DevOps from a Critical Social Theoretic perspective to examine a paradox in agility – does an always-on conceptualization of production forestall and impinge upon the processes of reflection and renewal that are also endemic to Agile methods? This paper is offered as a catalyst for critical examination of and as a call to action to advocate for sustaining and nurturing reflective practice in Agile and post-Agile methods, such as DevOps. Under threat of disenfranchisement and relegation to automation, we question how evolution towards DevOps may alter key elements in the tenets and principles of the Agile methods phenomenon

    Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation

    Full text link
    The intrinsic anomalous Hall effect in ferromagnets depends on subtle spin-orbit-induced effects in the electronic structure, and recent ab-initio studies found that it was necessary to sample the Brillouin zone at millions of k-points to converge the calculation. We present an efficient first-principles approach for computing the anomalous Hall conductivity. We start out by performing a conventional electronic-structure calculation including spin-orbit coupling on a uniform and relatively coarse k-point mesh. From the resulting Bloch states, maximally-localized Wannier functions are constructed which reproduce the ab-initio states up to the Fermi level. The Hamiltonian and position-operator matrix elements, needed to represent the energy bands and Berry curvatures, are then set up between the Wannier orbitals. This completes the first stage of the calculation, whereby the low-energy ab-initio problem is transformed into an effective tight-binding form. The second stage only involves Fourier transforms and unitary transformations of the small matrices set up in the first stage. With these inexpensive operations, the quantities of interest are interpolated onto a dense k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin zone integral. The present scheme, which also avoids the cumbersome summation over all unoccupied states in the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient first-principles calculations. Remarkably, we find that more than 99% of the effect can be recovered by keeping a set of terms depending only on the Hamiltonian matrix elements, not on matrix elements of the position operator.Comment: 16 pages, 7 figure

    Surface wave control for large arrays of microwave kinetic inductance detectors

    Get PDF
    Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the ∌−30\sim-30 dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor >>10. With the on-chip stray light absorber the point source response is close to simulations down to the ∌−35\sim-35 dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.Comment: accepted for publication in IEEE Transactions on Terahertz Science and Technolog

    Spin polarized transport current in n-type co-doped ZnO thin films measured by Andreev spectroscopy

    Full text link
    We use point contact Andreev reflection measurements to determine the spin polarization of the transport current in pulse laser deposited thin films of ZnO with 1% Al and with and without 2%Mn. Only films with Mn are ferromagnetic and show spin polarization of the transport current of up to 55 ±\pm 0.5% at 4.2 K, in sharp contrast to measurements of the nonmagnetic films without Mn where the polarization is consistent with zero. Our results imply strongly that ferromagnetism in these Al doped ZnO films requires the presence of Mn.Comment: Published versio

    The Stockman\u27s Scorecard: Validity and Reliability as an Instrument for Measuring Stockmanship

    Get PDF
    The quality of beef cattle stockmanship typically is evaluated through quantitative and qualitative measurements of animal behavior. The Stockman\u27s Scorecard is an observation instrument that has been developed to directly measure the actions of beef cattle stockmen. This article documents a pilot project for determining the content validity, internal consistency, and intrarater reliability of the scorecard as an evaluation instrument. Our results show that the scorecard is a valid and reliable instrument for measuring the actions of stockmen. The instrument can be a valuable tool for Extension educators in evaluating their stockmanship programming impacts

    Ligand Rotation in [Ar(R)N]\u3csub\u3e3\u3c/sub\u3eM-N\u3csub\u3e2\u3c/sub\u3e-Mâ€Č[N(R)Ar]\u3csub\u3e3\u3c/sub\u3e (M, Mâ€Č = Mo\u3csup\u3eIII\u3c/sup\u3e, Nb\u3csup\u3eIII\u3c/sup\u3e; R = \u3csup\u3ei\u3c/sup\u3ePr and \u3csup\u3et\u3c/sup\u3eBu) Dimers

    Get PDF
    Earlier calculations on the model N2-bridged dimer (”-N2)-{Mo[NH2]3}2 revealed that ligand rotation away from a trigonal arrangement around the metal centres was energetically favourable resulting in a reversal of the singlet and triplet energies such that the singlet state was stabilized 13 kJ mol−1 below the D3d triplet structure. These calculations, however, ignored the steric bulk of the amide ligands N(R)Ar (R = iPr and tBu, Ar = 3,5-C6H3Me2) which may prevent or limit the extent of ligand rotation. In order to investigate the consequences of steric crowding, density functional calculations using QM/MM techniques have been performed on the MoIIIMoIII and MoIIINbIII intermediate dimer complexes (”-N2)-{Mo[N(R)Ar]3}2 and [Ar(R)N]3Mo-(”-N2)-Nb[N(R)Ar]3 formed when threecoordinate Mo[N(R)Ar]3 and Nb[N(R)Ar]3 react with dinitrogen. The calculations indicate that ligand rotation away from a trigonal arrangement is energetically favourable for all of the ligands investigated and that the distortion is largely electronic in origin. However, the steric constraints of the bulky amide groups do play a role in determining the final orientation of the ligands, in particular, whether the ligands are rotated at one or both metal centres of the dimer. Analogous to the model system, QM/MM calculations predict a singlet ground state for the (”-N2)-{Mo[N(R)Ar]3}2 dimers, a result which is seemingly at odds with the experimental triplet ground state found for the related (”-N2)-{Mo[N(tBu)Ph]3}2 system. However, QM/MM calculations on the (”-N2)-{Mo[N(tBu)Ph]3}2 dimer reveal that the singlet–triplet gap is nearly 20 kJ mol−1 smaller and therefore this complex is expected to exhibit very different magnetic behaviour to the (”-N2)-{Mo[N(R)Ar]3}2 system
    • 

    corecore